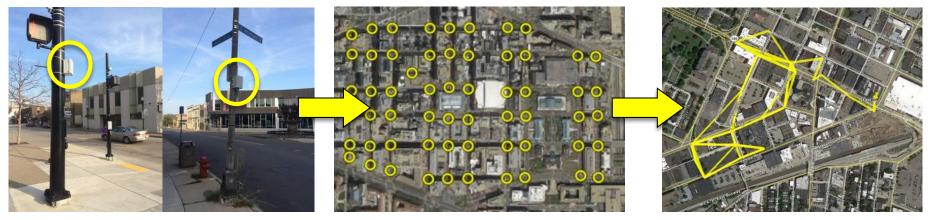


Greg Barlow, Ph.D. Chief Technology Officer Rapid Flow Technologies

www.rapidflowtech.com

PHAENON

Urban Analytics


PHAENON Urban Analytics

- Measure real-time urban traffic conditions ...
 - Travel times
 - Congestion
 - Cruising for parking
 - Incident detection

Summer 2016 59 sensor network for ParkDC around the Verizon Center

October 2016 \$1 million Phase II SBIR award from U.S. DOT

PHAENON Sensor Networks

Low-cost automatic vehicle identification (AVI) sensors Dense, ubiquitous sensor network deployments Reconstructed vehicle routes

PHAENON Sensor Networks

Installation

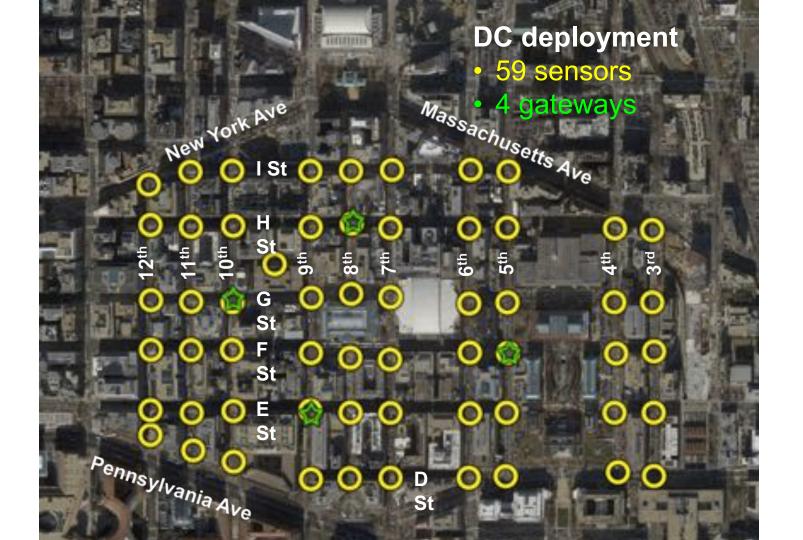
- Sensors are installed at each intersection in a network
- Low-cost, low-power sensors
- Only requires connection to power
- Easy installation, flexible location
- Sensors send data to the cloud through a low power wide area network

Key Features

- Second-by-second updates
- · Completely anonymous data
- Fine-grained data show where and when cruising happens
- Applications include:
 - Link-level travel times
 - Origin-destination data
 - Performance monitoring for traffic signal systems

Measuring Cruising for Parking

- Cruising for parking adds to traffic, causing extra congestion
- Smart parking policies and technology can address the causes of cruising
- What if we want to measure cruising continuously?
 - When and where does cruising happen?
 - How does cruising for parking change over time?


Our Approach

- Goal: To directly measure rates of cruising for parking
- Deploy a dense network of low-cost automatic vehicle identification (AVI) sensors (Bluetooth)
- Sensors detect vehicles (anonymized)
- Anonymous vehicle routes are reconstructed from distributed sensor data
- Vehicle routes are classified as cruising or non-cruising

Development Timeline

- □ 2014 Early experiments
 - Initial experiments to monitor travel times (TRB paper 15-5913)
- 2015 U.S. DOT SBIR Phase I
 - Temporary 38 sensor network in Pittsburgh
 - 3 week deployment, controlled study
- □ 2016 DC deployment
 - Permanent deployment supporting ParkDC
 - 59 sensors in Chinatown and Penn Quarter
- 2017-2018 U.S. DOT SBIR Phase II
 - Deployment of ~300 sensors across 2-4 pilot cities
 - Further algorithm development
 - Cloud-based application for continuous reporting
 - Incorporate other information (e.g., occupancy) to improve classification

What are we hoping to learn?

- How does cruising change over time?
- How do prices change cruising rates?
- Do cruising rates stabilize over time?
- What types of information, analysis, and visualization best support agency goals?
- What does success look like for demand-based pricing in the context of cruising?
- How can agencies use these sensor networks for other purposes to share costs?

Intelligent Traffic Signal Control

TRAFFIC CONGESTION costs \$120+ billion and produces 56 billion pounds of CO₂ per year in the US alone

POORLY TIMED SIGNALS are one big reason why

Most intersections run *fixed* timing plans

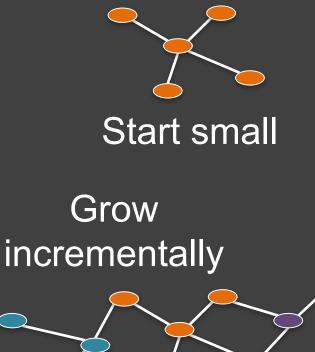
- Designed for average traffic conditions
- Begin "aging" the moment they are installed
- Unable to respond to real-time events
- Are designed strictly for arterials

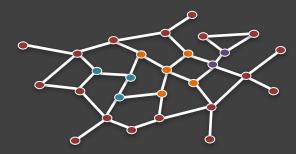
Goal: Real-time optimization of complex, dynamic traffic flows

Traffic signal control that adapts to urban traffic in real-time

In the field ... 26% lower travel time 41% less time idling 31% fewer stops 21% lower emissions

Decentralized control Coordinated action


Optimizes signals for the actual traffic on the road right now


Coordinates networks dynamically

Integrations with Connected Vehicle Technology

Distributed control makes it easy to ...

Scale to large networks

SULLU

History:

 Developed in the Robotics Institute at Carnegie Mellon University

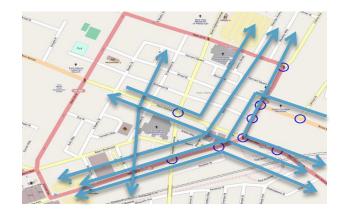
 Commercialized by Rapid Flow Technologies

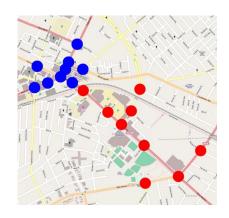
Development Timeline

2010-11: Development of core approach

2011-12: Initial pilot deployment

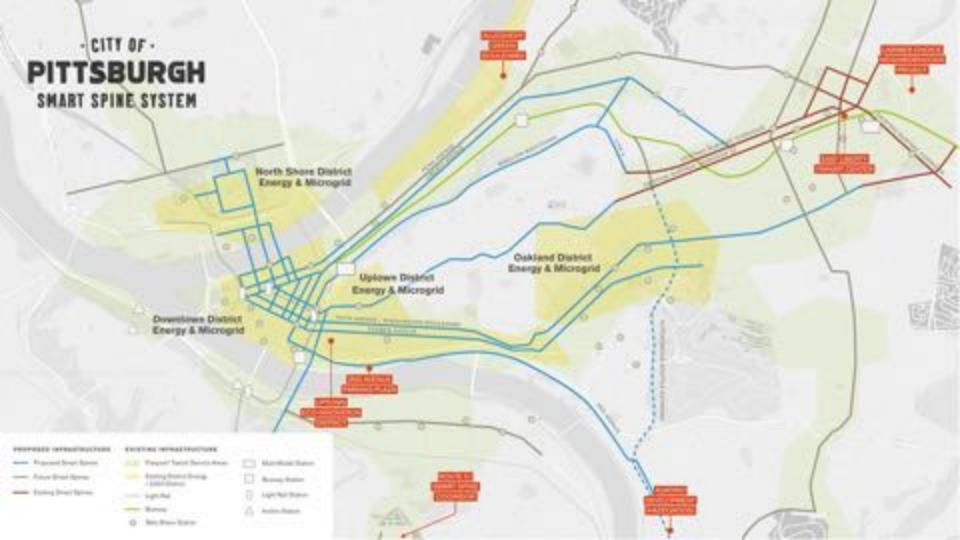
2013-16: Expansion of pilot test site to 50 intersections

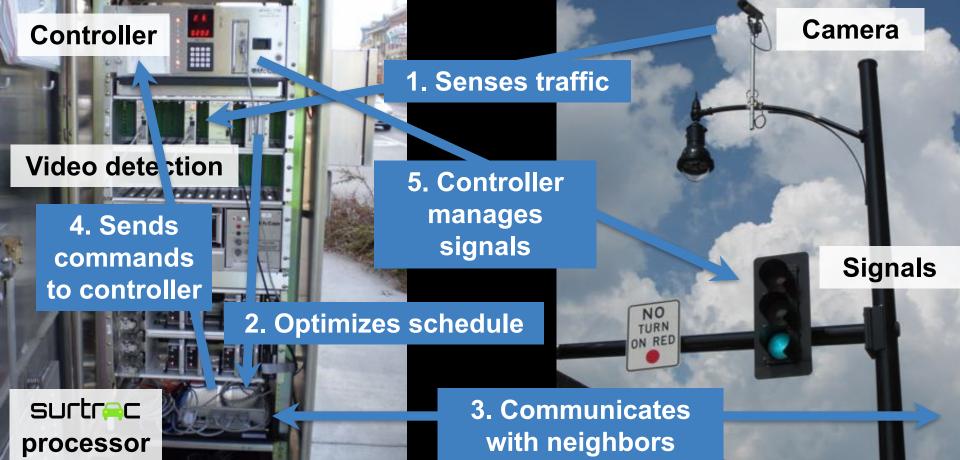

2015-17: Commercialization and integration with connected vehicle technology



Surtrac Pilot – Results and Status

East Liberty Field Test (Jun 2012)


% Improv.	Travel Time	# of Stops	Wait Time	Emissions
AM rush	30%	29%	48%	24%
Mid Day	33%	53%	50%	29%
PM rush	23%	9%	36%	18%
Evening	18%	35%	28%	14%
Overall	26%	31%	41%	21%



Bakery Square Expansion (Nov 2013)

% Improv.	Travel Time	# of Stops	Wait Time	Emissions
AM rush	17%	34%	33%	16%
Mid Day	21%	37%	38%	18%
PM rush	29%	45%	46%	25%
Overall	24%	40%	42%	21%


How does **surtrac** work?

Key Technical Ideas

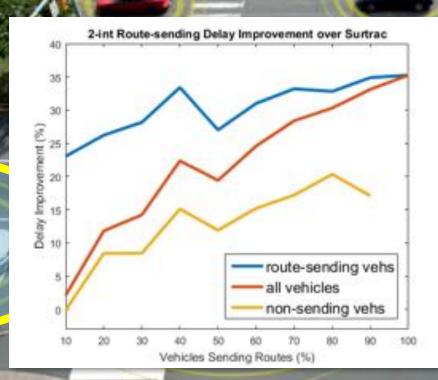
- Treat intersection control problem as a *single machine* scheduling problem
 - Aggregate representation of traffic flows to identify *input jobs*
- Communicate schedules to downstream neighbors to give visibility of future *input jobs*

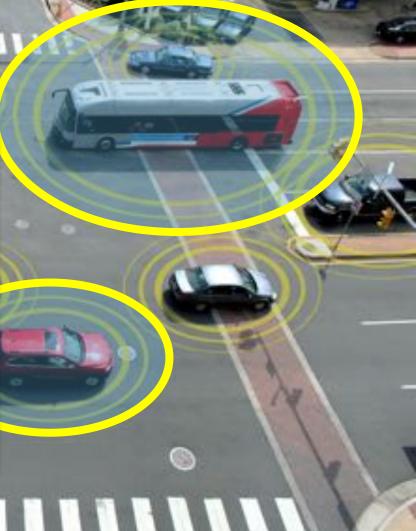
Surtrac Approach

- Decentralized, real-time control
- Creates coordination via vehicle arrival model
- Discovers dominant flows dynamically
- Doesn't require pre-selection of coordination
- Can manage coordination of multiple directions under many conditions
- Built for a connected vehicle future

Surtrac System Behaviors

- Light traffic Focus on moving platoons without stopping, durations vary widely, very responsive
- Shoulder periods Shift toward queue management and more defined coordination
- Saturation Queue management, less responsive to individual vehicles, heavy emphasis on dominant flows




Connected Vehicle Vision

- Connected vehicles will enable new, smarter signal capabilities
 - Better sensing, mode detection
 - Incident detection and alerting
 - Real-time routing
- Ubiquitous sensing technologies will expand traveler awareness
 - Intersections will act as local gateways to real-time information streams and analyses
 - Signal networks will form the back-bone of an Urban Information Grid

I-to-V: There's an accident ahead. Turn left to route around and proceed east. anni Inga

Existing CV Deployment

A

- 24 of our 50 intersections have DSRC roadside equipment
- Also piloting cellular alongside DSRC

Transit signal priority

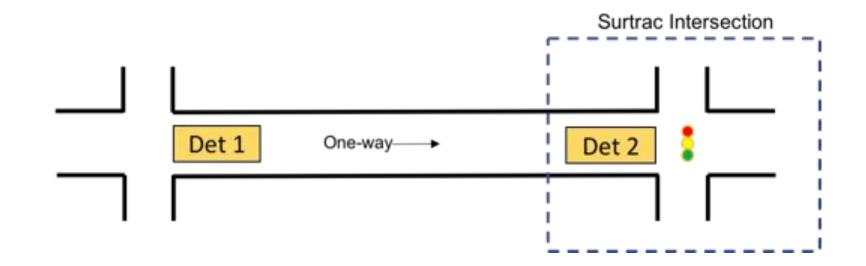
- Surtrac can accommodate use of external TSP systems, either by allowing these systems to override Surtrac, or by incorporating their requests
- Internal Transit Signal Optimization (TSO) process is also available. This allows transit to be directly factored into optimization and to predict arrival, rather than forcing reactive TSP operations

Installation

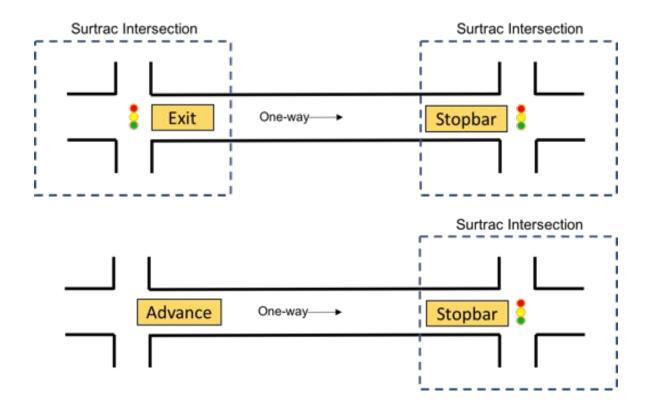
Surtrac processor

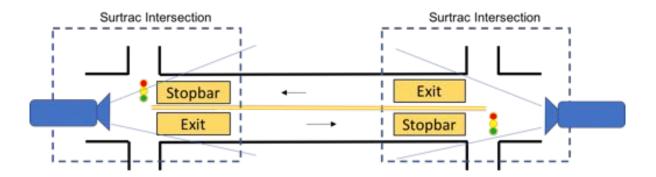
- Wide temperature embedded computer
- Commodity computer
- 6 x 6 x 4 inches
- Runs Linux
- Other form factors possible

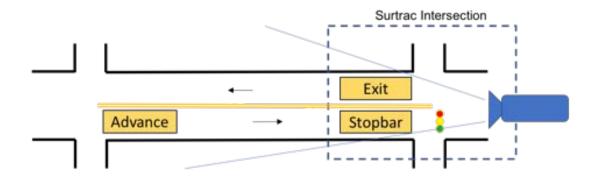
Communications


- Requires reliable Ethernet network between intersections
- Typically use IPv4 (IPv6 supported)
- Remote connection preferred (connection to TMC, cell modem, etc.)
- Fiber is best, wireless radios work well

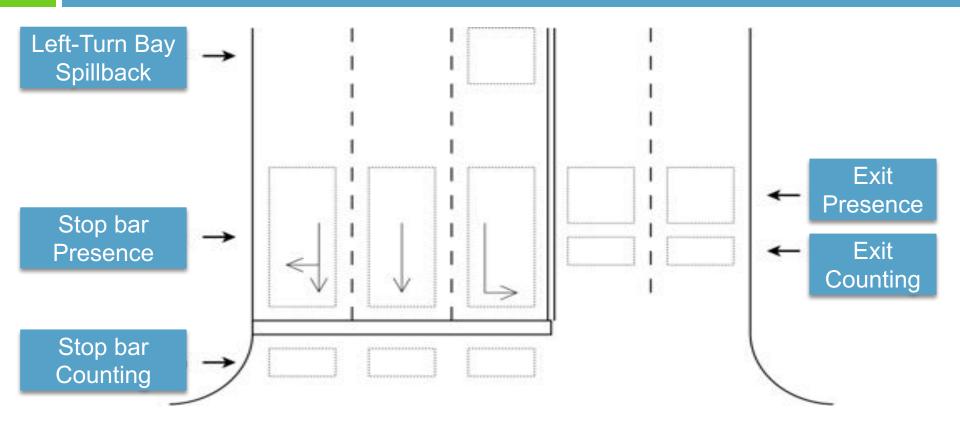
Detection


- Surtrac supports many detection vendors (developed or under development)
 - FLIR, Autoscope, Wavetronix, Iteris, Citilog, Gridsmart, ...
- Loops can be supported, but are not recommended

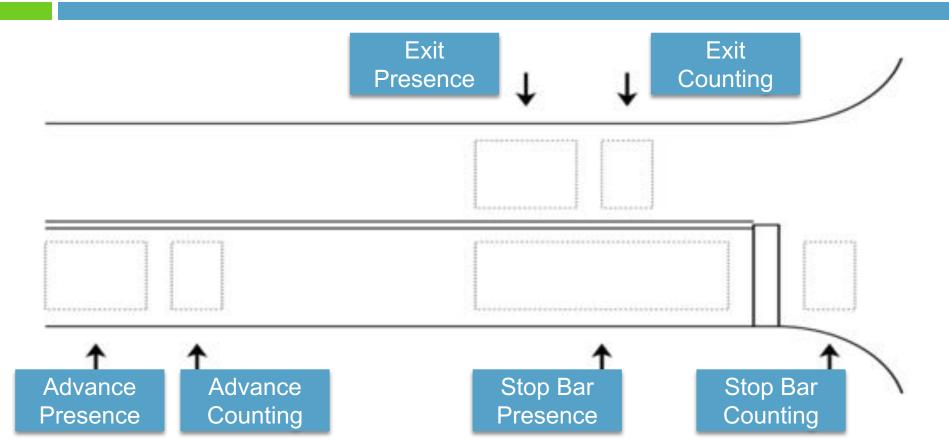

Required Detection Locations



Detection Zone Types in Surtrac

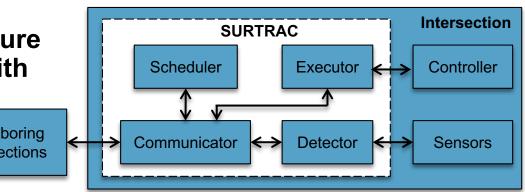


Achieving Detection in Deployment



Detection – Interior Approach

Detection – Edge Approach



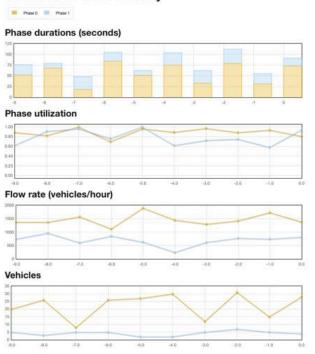
Controller compatibility

- Surtrac is designed to be modular, so it is easy to develop and deploy integrations to controllers, detection, and other systems
- Surtrac is compatible with most controllers, including Siemens, Econolite, McCain, Intelight, and even 170 controllers
- Most interfaces use NTCIP, other options possible as necessary

System Operation

- Operates by over-riding pre-existing timing plans and reverts in the event of unexpected problems
- Tolerates loss of communication with its neighbors
 - Automatically shifts to use of moving average flow forecasting to compensate for any loss in real-time input data streams
- Reduces traffic flow uncertainty by integrating sensor information from different sources
- Service Oriented Architecture facilitates plug and play with different controllers and detection equipment

Surtrac interface


- Multiple methods for remote monitoring and control, including mobile web
- Can be integrated with central systems
- Rich data logging
- Flexible alerts

All		:	Tabular			\$ Submit	1		
Name		Active	Enabled	Page	Scheduled	Phase #	Phases	Veh Calls	Ped Calls
PennCircleE_B	beor	yes	yes	1	0.00.00.6	0	[2, 6]	[2, 6]	0
PennCircle_Collins		yes	yes	1	0:00:00.7	o	(2, 6)	[2, 6]	0
Penn_Eastsidelli		yes	yes	1	0:00:00.3	0	[2, 6]	[2, 6]	[4]
PennCircleS_SHighland		yes	yes	1	0:00:01	0	[2, 6]	[2, 6]	0
PennCircleE_K	irkwood	yes	yes	1	0:00:00	0	[2, 6]	[2, 6]	0
Broad_Larimer		yes	yes	1	0:00	SURTR	AC		
	TRAP		1-	1	0:00 67.5	.141.210			
📄 SUR				1	0:00 Fif				
Fifth		4		1		esh rate: 0		•	seconds
Plain		\$ Submi	1		Disp	olay: four co	lumns	\$	
				1	0:00 Sub	nit			
Name: Active:	Penn_Fifth yes			1	0:00 View	ing cameras for fi	fth. refreshind	every 0 ms 🐻	efresh now
Enabled: yes				1		Last refreshed at: Wed May 20 2015 02:29:16 GMT-0400 (EDT)			
Page: Scheduled:	1 0:00:00.2					-			
Phase #:	1			1	0:00				
	[2, 6]			1	0:00				
Veh Calls: Ped Calls:	[2, 4, 6, 8]								and the second second
red Callsi	11								Contraction of the
	Help			i					

Real-time statistics

- Surtrac produces lots of data that can be used to monitor performance
- Outliers in the data can be used to identify non-recurring sources of congestion

Statistics for centre-beatty

Project Timeline

Project design

- Install and configure all other required upgrades (detection, networking)
- Install and configure Surtrac processors
- Test detection (Surtrac running passive)
- Test Surtrac (Surtrac running active)
- Tune Surtrac installation
- Operate

Greg Barlow, Ph.D. Chief Technology Officer Rapid Flow Technologies

www.rapidflowtech.com

Emergency vehicle preemption

- Our preference is for EVP to work directly with the controller
- Surtrac recovers after EVP event is complete
 Surtrac can prepare for upcoming EVP event

Transit signal priority

- Surtrac can accommodate use of external TSP systems, either by allowing these systems to override Surtrac, or by incorporating their requests
- Internal Transit Signal Optimization (TSO) process is also available. This allows transit to be directly factored into optimization and to predict arrival, rather than forcing reactive TSP operations

Key Technical Ideas

Schedule-Driven Intersection Control

- Treat each intersection as a single machine scheduling problem
- Use aggregate representation of traffic flows (as sequences of queues and platoons) to identify input jobs
- Use schedule to decide whether to extend or switch phase

Schedule-Driven Coordination

- Communicate schedules to downstream neighbors to give visibility of future input jobs
- Layer mechanisms for coping with mis-coordinated situations (e.g., spillback) to account for fact that schedules might change

Current Approaches

Parametric (Split, Cycle, Offset) Adjustment:

- Use historical moving average data; Computationally cheap
- Limitation: Requires some degree of stability in traffic flows over time; not sensitive to real-time variability of demands

Reinforcement Learning:

- Find policies for mapping local observations to signal actions
- Limitation: Slow to converge and difficult to apply in dynamic traffic flow

Online Planning:

- Optimize in a planning search space using current observation
- Limitation: Scalability (especially in a long planning horizon)

Network Level Coordination

Hierarchical/centralized coordination

Limitation: Less than real-time adjustment due to need to integrate traffic data over time

Distributed constraint optimization (DCOP)

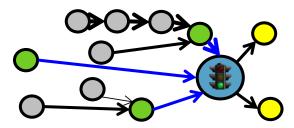
Limitation: extensive computational and communication demands

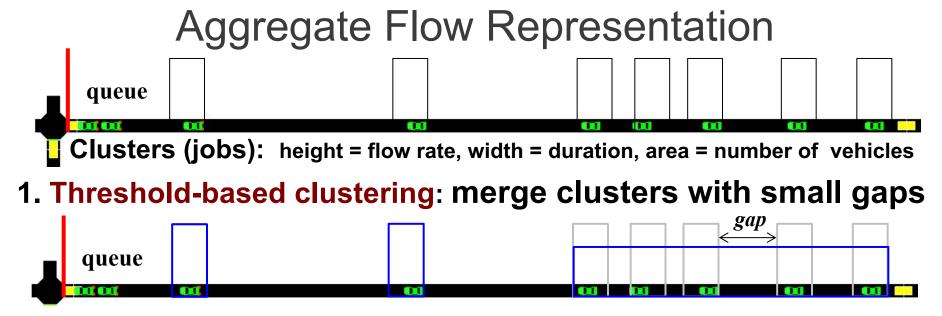
Shared global network view

Limitation: requires a priori specification of dominant flows

Real-Time Challenges

Planning Complexity

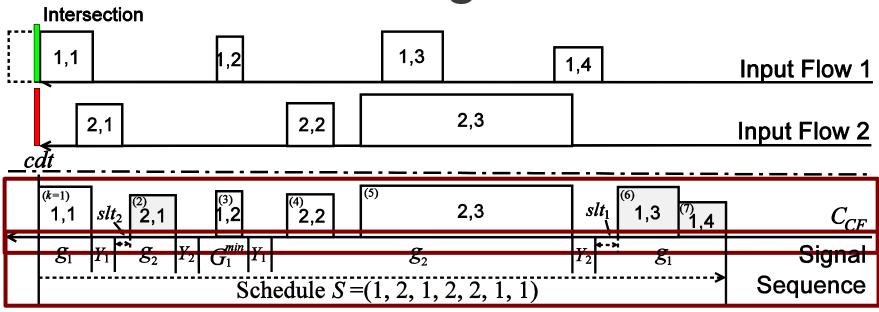

 State Space (Observations): Exponential in a prediction horizon Multiple Roads, Multiple lanes



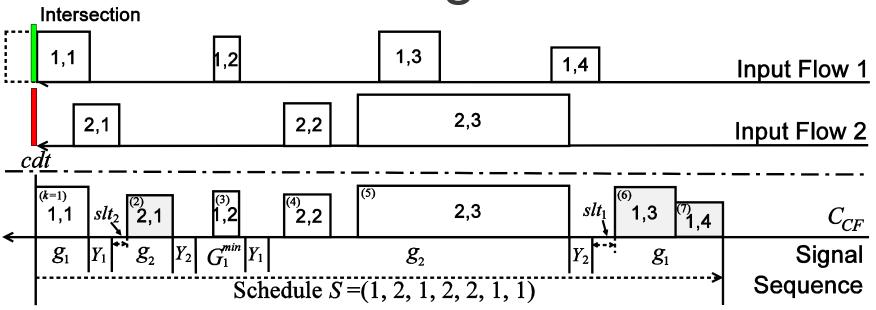
- Action Space (Signal sequences): Exponential in a planning horizon

Time resolution

- Sensing uncertainty
- Non-local impacts between intersections
- One nice property: networked problem structure

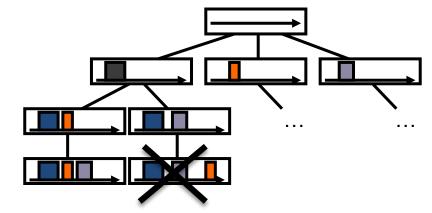


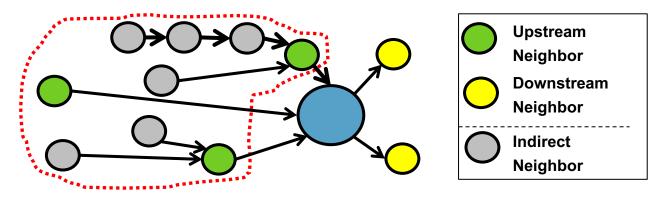
2. Anticipated queue: Anticipate the number of vehicles that are either *presently in the queue* or *will join it before it clears* (Lämmer & Helbing, 2008)



Scheduling Problem

- A Schedule = a sequence of all clusters (indivisible jobs)
- Schedule → Planned Signal Sequence (for traffic light)


Scheduling Problem


- Problem: Minimize the cumulative delay of all jobs, subject to
 - timing constraints for safety (yellow time) and fairness (G_i^{min} and G_i^{max} for each phase)

Scheduling Strategy

- Forward dynamic programming search
 - New job added at each decision stage
 - Eliminate dominated solutions at each stage (same current phase, same jobs, *different orders*)
 - Only keep the state with minimum delay for each extension (greedy)
 - Time complexity: |phases|^{2*} ∏ (|clusters_i|+1)

Optimistic Non-local Observation

- Optimistically assume that all neighbors follow their schedules and communicate planned output flows to amplify local views
 - Planned Output Flows => Predicted Input Flows for downstream neighbors
 - Input Flows = Predicted (Local) Input Flows + Predicted (Non-local) Input Flows from upstream neighbors